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Abstract: 

This paper  describes .hlASA-HDBK-4002, “Avoiding Problems  Caused by Spacecraft On-Orbit Internal 
Charging Effects”. The  handbook  includes a description of internal  charging  and why it is of concern  to 
spacecraft  designers. It also suggests how  to  determine  when a project needs to  consider  internal 
spacecraft  charging, it contains an electron  penetration  depth  chart,  rationale  for a critical  electron flux 
criterion, a worst-case  geosynchronous  electron  plasma  spectrum,  general  design  guidelines, 
quantitative design guidelines,  and a typical  materials  characteristics list. Appendices  include a listing of 
some  environment codes, electron  transport  codes, a discussion of geostationary  electron  plasma 
environments, a brief description of electron  beam  and  other  materials tests, and  transient  susceptibility 
tests. The  handbook will be in the  web  page: http://standards.nasa.gov. 

A prior  document, NASA TP2361 “Design Guidelines  for  Assessing  and  controlling  Spacecraft  Charging 
Effects”, 1984, is in use  to  describe  mitigation  techniques for the  effects of surface  charging of satellites 
in space plasma  environments. HDBK-4002 is meant  to  complement 2361 and  together,  the  pair of 
documents  describe  both  cause  and  mitigation  designs for problems  caused by energetic space plasmas. 

1 .  What is Internal  Charging? 

In contrast  to  the  better  known “surface 
charging”,  internal  charging is an  accumulation of 
electrons  that  penetrate  to  the  interior of a 
satellite.  The key distinction is that  surface 
electrostatic  discharges (ESDs) are  often  loosely 
coupled  to  the  interior  victim  circuits. This 
handbook is concerned  about  electrons with 
sufficient  energy to deposit  close  to a victim 
circuit so that a resultant ESD a m  directly  to a 
victim  circuit (Fig. 1). The  implicit  assumption is 
that  the  spacecraft is a  cage, and  circuits outside 
of the  cage  are  protected  from  surface ESDs. By 
this definition,  electrons must have enough 
energy  to  penetrate  the  spacecraft  shell.  The 
shell of  most satellites  varies  from a thin layer of 
thermal  blankets,  to a more  robust 100+ mils of 
aluminum  or  equivalent.  (Protons  are  not  usually 
considered a  cause of internal  charging 
problems.)  Electrons with a range of energies in 
excess of 100 keV (capable of penetrating 3 mils 
of aluminum  or  equivalent  protection) or 1 MeV 
(about 80 mils protection)  (Figure 2) and  higher 
can cause internal  charging. In Earth 
geosynchronous orbits (GEO), the flux above 3 
MeV is generally  too low to  be  of concern. 
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Figure 1. Illustrating  Internal  Charging 
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Figure 2. Penetration  Depth  Curves 
(Depth in mils of  aluminum 
vs electron  energy,  MeV) 
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2. What Satellites Need Internal 
Charging  Protection? 

Whether a satellite  does or does not need 
protection  from  internal  charging depends on 
the  energetic  electron  environment,  the degree 
of shielding,  the  amount of materials  that  can 
accumulate  charge, the charge  leakage  rate,  and 
the  sensitivity of the  victim  circuit. In short, it is 
not an easy  answer.  However,  there is user 
experience from  on-orbit  analysis of various 
satellites’  on-orbit  anomalies  and  there is 
quantitative  data  from  the CRRES satellite’s 
experiments.  These  sources imply that the 
internal  charging  anomaly  threshold is 2x10” 
electrons per square  centimeter  accumulated 
over a 10-hour  period  (equivalent  to 5x10 /cm -s 
average). An additional  safety  factor is not 
specified in the  NASA Handbook. 

The  handbook  presents a simple  screening 
method  to  determine  at  the  start of a project 
whether  internal  charging  should  be considered. 
The  environments  where  internal  charging  can 
“be a problem  include  regions of Jupiter,  Saturn, 
and  Earth. A chart  has  been  prepared  to serve 
as an  initial  screen  for  circular  Earth orbits (Fig. 3). 
The  chart is very  simplified  and  includes 
numerous  assumptions  about  the  environment, 
victim  sensitivity, etc., but provides a quick  idea 
whether  internal  charging  may  be of concern. A 
few  common  satellite  types  are  noted  on this 
chart  for  perspective. 
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Figure 3. Internal  Charging  Hazard  Regions 
(GEO -36,000 km altitude) 

3. What is a Worst-case Electron 
Environment? 

To  do  an  analytic assessment of spacecraft 
internal  charging,  the  environment must be 
specified.  Then  that  environment  can  be  used 
in a particle  transport  code (using the  spacecraft 
geometry  data)  to  determine  the flux into 
candidate  electron  accumulation  regions 
(dielectrics  and  ungrounded  metals,  such as 
radiation  spot  shields, etc.). Fig. 3 shows a few 
of the  typical  Earth  user  orbits.  The  handbook 
presents  a  “worst-case”  (greater  than  95%-ile) 
electron  integral  spectrum  for GEO that  was 
derived by first doing a quick  screen for high 
environment  days using GOES E>2 MeV data, 
and  then using Los Alamos  satellite  data to 
determine  an  energy  spectrum.  That  result is 
shown in Fig. 4. Fig. 4 also  presents  the  often- 
used NASA AE8min electron  spectrum  for 
comparison (it was  selected to be 200 degrees E 
longitude,  which  provides  the  highest 
amplitude). As can  be seen, the AE8min 
spectrum,  designed  to  be a long-term average, 
is substantially  lower  and is inadequate  for 
internal  charging  analyses.  Internal  charging  has 
roughly a 10-hour  time  scale  and  the AE8 is on 
the  order of a year.  Other  orbit  environments  are 
not part of the  handbook. 
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Figure 4. Suggested  Worst-case GEO Electron 
Environment  and  NASA  AE8min  Compared 



4. What is Proper Design Against 
Internal Charging  Problems? 

Having  determined  that  there  may  be a problem, 
the  question  becomes  what to do  about it. 
Conceptually  there  are  simple  design  ideas  to 
prevent  the  problem.  The  practical  problem is 
that  materials with the  requisite  characteristics 
often  do  not  exist, so the  designer  usually must 
resort to solutions  that  are not simple,  or  that 
require  mass  or  extra  circuit  elements,  etc.  For 
example,  remembering  Figure 3, the most 
simple is to  choose  an orbit that  is  not in a region 
of concern.  Secondly,  a  simple way  to  avoid  any 
problems is to  prevent  the  accumulation of 
charge:  use  dielectrics  that  are  leaky (10’ ohm- 
cm,  and  grounded, is good  enough)  and assure 
that  there  are  no  floating  conductors in the 
satellite.  Dielectrics  are a problem because 
dielectrics with other  desirable  characteristics 
(Teflon,  Kapton, FR4 circuit  boards, etc.)  are 
more  resistive  than is desirable for internal 
charging.  Conductors  are a problem because of 
numerous  floating  items  (radiation  spot shields, 
capacitor cans, transformer  cores,  etc.)  and  even 
wiring that may become  disconnected  from a 
circuit  due  to  switching  at  both ends. The  simple 
solution of placing  lots of  aluminum  or equivalent 
shielding  over  the  whole  satellite  may  add  too 
much  mass.  To  summarize,  there is no  simple 
solution  to  the  internal  charging  problem for a 
satellite in a potentially  hazardous  environment. 
The  solution must come  from  several  design 
features  used  together, with assumption of risk. 

A short list of design  suggestions is given here: 
keep  everything inside a grounded  Faraday 
Cage;  shield as much as possible ... 110 mils of 
aluminum  (grounded) is usually  sufficient  for 
GEO orbits;  ground a l l  metallic  elements  that  are 
not  related  to  ground by virtue of being in a 
circuit; assure  that all  circuitry  has a  chassis 
ground reference;  ground a l l  radiation spot 
shields;  filter  ESD-sensitive  circuits  (to a level of 
20 pF and 20 kV if possible);  provide a bleed 
path  to  ground  for a l l  but the  smallest  size 
conductors;  ground a l l  conductive  layers of 
thermal  blankets;  protect  dielectrics  and  circuits 
to the  level of 10“ e/cm  per 10 hours; screen all 2 

circuits  and  protect if they  are  Class 1 ESD- 
sensitive  (per MIL-STD-883, Method 301 5); 
keep  dielectric  fields  below 100 V/mil. 

5. Other  Information in the Handbook 

The  Handbook  also  contains a representative list 
of spacecraft  materials  and their ESD 
parameters; a listing and  brief  description  of 
various  electron  transport codes; additional 
descriptions  of  the  Earth’s  plasma  environment; 
an  example of a simple  internal  charging  analysis; 
descriptions of  material  testing  for  charging 
behavior; a list  of  data sources for  plasma 
environments;  and a bibliography with 
annotations. 
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